Strict Quantization of Polynomial Poisson Structures
نویسندگان
چکیده
We show how combinatorial star products can be used to obtain strict deformation quantizations of polynomial Poisson structures on $\mathbb R^d$, generalizing known results for constant and linear arbitrary degree. give several examples nonlinear construct explicit formal whose parameter evaluated any real value $\hbar$, giving the space analytic functions R^d$ with infinite radius convergence. also address further questions such as continuity classical limit $\hbar \to 0$, compatibility *-involutions, existence positive functionals. The latter realize *-algebras operators a pre-Hilbert which we demonstrate in concrete example.
منابع مشابه
On quantization of quadratic Poisson structures
Any classical r-matrix on the Lie algebra of linear operators on a real vector space V gives rise to a quadratic Poisson structure on V which admits a deformation quantization stemming from the construction of V. Drinfel’d [Dr], [Gr]. We exhibit in this article an example of quadratic Poisson structure which does not arise this way.
متن کاملPolynomial Poisson structures on affine solvmanifolds
A n-dimensional Lie group G equipped with a left invariant symplectic form ω+ is called a symplectic Lie group. It is well-known that ω+ induces a left invariant affine structure on G. Relatively to this affine structure we show that the left invariant Poisson tensor π+ corresponding to ω+ is polynomial of degree 1 and any right invariant k-multivector field on G is polynomial of degree at most...
متن کاملQuantization of Linear Poisson Structures and Degrees of Maps
1.1. Kontsevich’s quantization. Recently, Kontsevich [3] provided a deformation quantization of the algebra of functions on an arbitrary Poisson manifold. The key ingredient of his construction is the quantization formula for R, which is then extended to the case of general manifolds using formal geometry. The terms of the star product are identified with certain Feynman graphs, and their coeff...
متن کاملNarumi-Katayama Polynomial of Some Nano Structures
The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...
متن کاملStrict Quantizations of Almost Poisson Manifolds
We show the existence of (non-Hermitian) strict quantization for every almost Poisson manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2022
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-022-04541-4