Strong convergence theorems for maximal monotone operators and continuous pseudocontractive mappings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence theorems for maximal monotone operators and continuous pseudocontractive mappings

We introduce a new iterative algorithm for finding a common element of the solution set of the variational inequality problem for a continuous monotone mapping, the zero point set of a maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the sequence generated by the proposed algorithm to a commo...

متن کامل

Strong convergence theorems for quasi-nonexpansive mappings and maximal monotone operators in Hilbert spaces

We present the strong convergence theorem for the iterative scheme for finding a common element of the fixed-point set of a quasi-nonexpansive mapping and the zero set of the sums of maximal monotone operators in Hilbert spaces. Our results extend and improve the recent results of Takahashi et al. (J. Optim. Theory Appl. 147:27-41, 2010) and Takahashi and Takahashi (Nonlinear Anal. 69:1025-1033...

متن کامل

Strong Convergence Theorems by Hybrid Methods for Maximal Monotone Operators and Generalized Hybrid Mappings

Let C be a closed convex subset of a real Hilbert space H. Let T be a supper hybrid mapping of C into H, let A be an inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. In this paper, we introduce two iterative sequences by hybrid methods of finding a point of F (T )∩ (A+B)−10, where F (T ) is the set of fixed p...

متن کامل

Strong Convergence Theorems of Multivalued Nonexpansive Mappings and Maximal Monotone Operators in Banach Spaces

In this paper, we prove a strong convergence theorem for fixed points of sequence for multivalued nonexpansive mappings and a zero of maximal monotone operator in Banach spaces by using the hybrid projection method. Our results modify and improve the recent results in the literatures.

متن کامل

Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.06.81