Strong convexity for harmonic functions on compact symmetric spaces

نویسندگان

چکیده

Let $h$ be a harmonic function defined on spherical disk. It is shown that $\Delta ^k |h|^2$ nonnegative for all $k\in \mathbb {N}$ where $\Delta$ the Laplace-Beltrami operator. This fact generalized to functions disk in normal homogeneous compact Riemannian manifold, and particular symmetric space of type. complements similar property $\mathbb {R}^n$ discovered by first two authors related strong convexity $L^2$-growth functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On difference sequence spaces defined by Orlicz functions without convexity

In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.  

متن کامل

On Schur Convexity of Some Symmetric Functions

For x x1, x2, . . . , xn ∈ 0, 1 n and r ∈ {1, 2, . . . , n}, the symmetric function Fn x, r is defined as Fn x, r Fn x1, x2, . . . , xn; r ∑ 1≤i1<i2 ···<ir≤n ∏r j 1 1 xij / 1−xij , where i1, i2, . . . , in are positive integers. In this paper, the Schur convexity, Schur multiplicative convexity, and Schur harmonic convexity of Fn x, r are discussed. As consequences, several inequalities are est...

متن کامل

Harmonic Analysis on Real Reductive Symmetric Spaces

Let G be a reductive group in the Harish-Chandra class e.g. a connected semisimple Lie group with finite center, or the group of real points of a connected reductive algebraic group defined over R. Let σ be an involution of the Lie group G, H an open subgroup of the subgroup of fixed points of σ. One decomposes the elements of L(G/H) with the help of joint eigenfunctions under the algebra of le...

متن کامل

A Poisson Structure on Compact Symmetric Spaces

We present some basic results on a natural Poisson structure on any compact symmetric space. The symplectic leaves of this structure are related to the orbits of the corresponding real semisimple group on the complex flag manifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15735