Strong duality for generalized monotropic programming in infinite dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LIDS - 2692 Extended Monotropic Programming and Duality

We consider the problem minimize m ∑ i=1 fi(xi) subject to x ∈ S, where xi are multidimensional subvectors of x, fi are convex functions, and S is a subspace. Monotropic programming, extensively studied by Rockafellar, is the special case where the subvectors xi are the scalar components of x. We show a strong duality result that parallels Rockafellar’s result for monotropic programming, and co...

متن کامل

Duality for Nondifferentiable Multiobjective Semi-infinite Programming with Generalized Convexity

The purpose of this paper is to consider the Mond-Weir type dual model for a class of non-smooth multiobjective semi-infinite programming problem. In this work, we use generalization of convexity namely ( , ) G F θ − convexity and Kuhn-Tucker constraint qualification, to prove new duality results for such semi-infinite programming problem. Weak, strong and converse duality theorems are derived....

متن کامل

Strong duality and sensitivity analysis in semi-infinite linear programming

Finite-dimensional linear programs satisfy strong duality (SD) and have the “dual 8 pricing” (DP) property. The (DP) property ensures that, given a sufficiently small perturbation of 9 the right-hand-side vector, there exists a dual solution that correctly “prices” the perturbation by 10 computing the exact change in the optimal objective function value. These properties may fail in 11 semi-inf...

متن کامل

On a Zero Duality Gap Result in Extended Monotropic Programming

In this note we correct and improve a zero duality gap result in extended monotropic programming given by Bertsekas in [1].

متن کامل

Strong Duality for Semidefinite Programming

It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interior-point methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2013

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.10.052