Strong duality for generalized monotropic programming in infinite dimensions
نویسندگان
چکیده
منابع مشابه
LIDS - 2692 Extended Monotropic Programming and Duality
We consider the problem minimize m ∑ i=1 fi(xi) subject to x ∈ S, where xi are multidimensional subvectors of x, fi are convex functions, and S is a subspace. Monotropic programming, extensively studied by Rockafellar, is the special case where the subvectors xi are the scalar components of x. We show a strong duality result that parallels Rockafellar’s result for monotropic programming, and co...
متن کاملDuality for Nondifferentiable Multiobjective Semi-infinite Programming with Generalized Convexity
The purpose of this paper is to consider the Mond-Weir type dual model for a class of non-smooth multiobjective semi-infinite programming problem. In this work, we use generalization of convexity namely ( , ) G F θ − convexity and Kuhn-Tucker constraint qualification, to prove new duality results for such semi-infinite programming problem. Weak, strong and converse duality theorems are derived....
متن کاملStrong duality and sensitivity analysis in semi-infinite linear programming
Finite-dimensional linear programs satisfy strong duality (SD) and have the “dual 8 pricing” (DP) property. The (DP) property ensures that, given a sufficiently small perturbation of 9 the right-hand-side vector, there exists a dual solution that correctly “prices” the perturbation by 10 computing the exact change in the optimal objective function value. These properties may fail in 11 semi-inf...
متن کاملOn a Zero Duality Gap Result in Extended Monotropic Programming
In this note we correct and improve a zero duality gap result in extended monotropic programming given by Bertsekas in [1].
متن کاملStrong Duality for Semidefinite Programming
It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interior-point methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2012.10.052