Strong Electron Correlation in Nitrogenase Cofactor, FeMoco
نویسندگان
چکیده
منابع مشابه
Comparative electronic structures of nitrogenase FeMoco and FeVco
The electronic structures of the nitrogenase active sites, FeMoco and FeVco, have been investigated by a parallel study of the holoenzymes with synthetic cubane cluster models. Using high-resolution X-ray spectroscopies coupled with density functional theory calculations, key diff erences between FeMoco and FeVco have been identifi ed, rationalizing the isozymes’ diff erential affi nity for var...
متن کاملNitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement.
The [Mo:7Fe:9S:C] iron-molybdenum cofactor (FeMoco) of nitrogenase is the largest known metal cluster and catalyses the 6-electron reduction of dinitrogen to ammonium in biological nitrogen fixation. Only recently its atomic structure was clarified, while its reactivity and electronic structure remain under debate. Here we show that for its resting S=3/2 state the common iron oxidation state as...
متن کاملNitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor.
When the iron-molybdenum cofactor (FeMoco) was extracted from the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae and combined with the FeMoco-deficient MoFe protein from a nifB mutant, the resultant MoFe protein exhibited the NifV phenotype, i.e. in combination with wild-type Fe protein it exhibited poor N2-fixation activity and its H2-evolution activity was inhibited b...
متن کاملBiosynthesis of iron-molybdenum cofactor in the absence of nitrogenase.
Klebsiella pneumoniae accumulates molybdenum during nitrogenase derepression. The molybdenum is primarily in nitrogenase component I in the form of iron-molybdenum cofactor (FeMo-co). Mutations in any of three genes (nifB, nifN, and nifE) involved in the biosynthesis of FeMo-co resulted in very low molybdenum accumulation and in a molybdenum-free nitrogenase component I. A mutant lacking both s...
متن کاملIn vitro synthesis of the iron-molybdenum cofactor of nitrogenase.
Molybdate- and ATP-dependent in vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase requires the protein products of at least the nifB, nifN, and nifE genes. Extracts of FeMo-co-negative mutants of Klebsiella pneumoniae and Azotobacter vinelandii with lesions in different genes can be complemented for FeMo-co synthesis. Both K. pneumoniae and A. vinelandii dinitrogenase (co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry A
سال: 2018
ISSN: 1089-5639,1520-5215
DOI: 10.1021/acs.jpca.8b00941