Structural conserved moiety splitting of a stoichiometric matrix
نویسندگان
چکیده
منابع مشابه
Matrix Splitting Principles
The systematic analysis of convergence conditions, used in comparison theorems proven for different matrix splittings, is presented. The central idea of this analysis is the scheme of condition implications derived from the properties of regular splittings of a monotone matrix A =M1−N1 =M2−N2. An equivalence of some conditions as well as an autonomous character of the conditions M−1 1 ≥ M−1 2 ≥...
متن کاملStructural, Magnetic and Catalytic Properties of Non-Stoichiometric Lanthanum Ferrite Nano-Perovskites in Carbon Monoxide Oxidation
Perovskite-type oxides of LaFe(1+x)O(3+δ) (x = 0.0, 0.2, 0.5 and 0.7) were synthesized by citrate sol–gel methodto ensure the formation of nanosized perovskites. The physicochemical properties of these LaFe(1+x)O(3+δ)materials were characterized by thermal gravimetric/differential analyses, Fourier transform infraredspectroscopy, X-ray powder diffraction, scanning electron and...
متن کاملA Matrix Splitting Perspective on Planning with Options
We show that the Bellman operator underlying the options framework leads to a matrix splitting, an approach traditionally used to speed up convergence of iterative solvers for large linear systems of equations. Based on standard comparison theorems for matrix splittings, we then show how the asymptotic rate of convergence varies as a function of the inherent timescales of the options. This new ...
متن کاملA Stochastic Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization
where (a) because that E and Tr are both linear operators and Tr[E[ZZ ]] is certain positive number which is independent on the optimization variables, then this term can be replaced by another positive constant Tr[EZ[Z ]EZ[Z]]. Based on the equivalence between (13) and (14), we can apply the result shown in [28, Lemma 2]. Since the constraint set is polyhedral in the formulation (3), the linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Biology
سال: 2020
ISSN: 0022-5193
DOI: 10.1016/j.jtbi.2020.110276