Structural-EM for learning PDG models from incomplete data
نویسندگان
چکیده
منابع مشابه
Structural-EM for learning PDG models from incomplete data
Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by other popular models, such as Bayesian Networks. Furthermore, inference can be carried out efficiently over a PDG, in time linear in the size of the model. The problem of learning PDGs from data has been studied in the ...
متن کاملSupervised learning from incomplete data via an EM approach
Real-world learning tasks may involve high-dimensional data sets with arbitrary patterns of missing data. In this paper we present a framework based on maximum likelihood density estimation for learning from such data set.s. VVe use mixture models for the density estimates and make two distinct appeals to the ExpectationMaximization (EM) principle (Dempster et al., 1977) in deriving a learning ...
متن کاملLearning from Incomplete Data
Survey non-response is an important problem in statistics, economics and social sciences. The paper reviews the missing data framework of Little & Rubin [Little and Rubin, 1986]. It presents a survey of techniques to deal with non-response in surveys using a likelihood based approach. The focuses on the case where the probability of a data missing depends on its value. The paper uses the two-st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2010
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2010.01.010