Structure preserving stratification of skew-symmetric matrix polynomials
نویسندگان
چکیده
منابع مشابه
Skew-Symmetric Matrix Polynomials and their Smith Forms
Two canonical forms for skew-symmetric matrix polynomials over arbitrary fields are characterized — the Smith form, and its skew-symmetric variant obtained via unimodular congruences. Applications include the analysis of the eigenvalue and elementary divisor structure of products of two skew-symmetric matrices, the derivation of a Smith-McMillan-like canonical form for skew-symmetric rational m...
متن کاملStructure-Preserving Transformations of Skew-Hamiltonian/Hamiltonian Matrix Pencils
ityl or positive realness in a VLSI model is an important property Passivity in a VLSI model is an important property to guarantee stato guarantee stable global simulation [3,7]. Existing DS passivity ble global simulation. Most VLSI models are naturally described tests are restrnctive in different aspects. For example, the extended as descriptor systems (DSs) or singular state spaces. Passivit...
متن کاملPerturbation Analysis for Complex Symmetric, Skew Symmetric, Even and Odd Matrix Polynomials
In this work we propose a general framework for the structured perturbation analysis of several classes of structured matrix polynomials in homogeneous form, including complex symmetric, skew-symmetric, even and odd matrix polynomials. We introduce structured backward errors for approximate eigenvalues and eigenvectors and we construct minimal structured perturbations such that an approximate e...
متن کاملDeflating Quadratic Matrix Polynomials with Structure Preserving Transformations
Given a pair of distinct eigenvalues (λ1, λ2) of an n×n quadratic matrix polynomial Q(λ) with nonsingular leading coefficient and their corresponding eigenvectors, we show how to transform Q(λ) into a quadratic of the form [ Qd(λ) 0 0 q(λ) ] having the same eigenvalues as Q(λ), with Qd(λ) an (n− 1)× (n− 1) quadratic matrix polynomial and q(λ) a scalar quadratic polynomial with roots λ1 and λ2. ...
متن کاملA Range Associated with Skew Symmetric Matrix
We study the range S(A) := {xT Ay : x, y are orthonormal in Rn}, where A is an n×n complex skew symmetric matrix. It is a compact convex set. Power inequality s(A) ≤ s(A), k ∈ N, for the radius s(A) := maxξ∈S(A) |ξ| is proved. When n = 3, 4, 5, 6, relations between S(A) and the classical numerical range and the k-numerical range are given. Axiomatic characterization of S(A) is given. Sharp poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.06.044