Structure theory for a class of grade four Gorenstein ideals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Theory for a Class of Grade Four Gorenstein Ideals

An ideal / in a commutative noetherian ring R is a Gorenstein ideal of grade g if pdR(R/I) = grade I = g and the canonical module HxtsR(R/I, R) is cyclic. Serre showed that if g = 2 then / is a complete intersection, and Buchsbaum and Eisenbud proved a structure theorem for the case g = 3. We present generic resolutions for a class of Gorenstein ideals of grade 4, and we illustrate the structur...

متن کامل

Liaison Addition and the Structure of a Gorenstein Liaison Class

We study the concept of liaison addition for codimension two subschemes of an arithmetically Gorenstein projective scheme. We show how it relates to liaison and biliaison classes of subschemes and use it to investigate the structure of Gorenstein liaison equivalence classes, extending the known theory for complete intersection liaison of codimension two subschemes. In particular, we show that o...

متن کامل

Monomial Ideals and the Gorenstein Liaison Class of a Complete Intersection

In an earlier work the authors described a mechanism for lifting monomial ideals to reduced unions of linear varieties. When the monomial ideal is Cohen-Macaulay (including Artinian), the corresponding union of linear varieties is arithmetically CohenMacaulay. The first main result of this paper is that if the monomial ideal is Artinian then the corresponding union is in the Gorenstein linkage ...

متن کامل

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1982

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1982-0642342-4