Study of block-iterative Methods for Solving Partial Differential Equations
نویسندگان
چکیده
منابع مشابه
Finite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملGeometrical Methods for Solving of Fully Nonlinear Partial Differential Equations
This is the second volume of the new series “Mathematics and its Applications” published by the Union of Bulgarian Mathematicians∗ Petar Popivanov, the author of the book, is a well known expert in the theory of partial differential equations (PDE), who has published several books and over 120 research articles. Since 1969 he works at the Institute of Mathematics and Informatics of the Bulgaria...
متن کاملMoving Mesh Methods for Solving Parabolic Partial Differential Equations
In this thesis, we introduce and assess a new adaptive method for solving non-linear parabolic partial differential equations with fixed or moving boundaries, using a moving mesh with continuous finite elements. The evolution of the mesh within the interior of the spatial domain is based upon conserving the distribution of a chosen monitor function across the domain throughout time, where the i...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
The use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.11.560