Study on Dephosphorization Behavior for Oolitic Hematite by High Temperature Reduction
نویسندگان
چکیده
منابع مشابه
Reaction Behavior of Phosphorus in Coal-Based Reduction of an Oolitic Hematite Ore and Pre-Dephosphorization of Reduced Iron
Coal-based reduction followed by magnetic separation is an effective way to recover iron from high phosphorus-containing oolitic hematite ore. Given that high quantities of dephosphorization agent are needed to obtain low phosphorus reduced iron, a novel approach is proposed by the authors. Without prior phosphorus removal, the phosphorus was enriched in the reduced iron during a reduction proc...
متن کاملUpgrading of High-Aluminum Hematite-Limonite Ore by High Temperature Reduction-Wet Magnetic Separation Process
Abstract: The huge consumption of iron ores in China has attracted much attention to utilizing low grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory resource and difficult to upgrade by traditional physical concentration processes due to the superfine size and close dissemination of iron minerals with gangue minerals. An innovative technology for a...
متن کاملNumerical Study of Reduction of NOx Emission by High Temperature Air Combustion Technology
A numerical study on Nox emission from an industrial furnace utilizing high temperature air combustion (HTAC) technology was done. The basic concept of the regenerative burner including heating a diluting of fresh air by flue gas was implemented in a two-dimensional furnace model. Governing equations in conjunction with a turbulence model and an overall chemistry model were solved using an impl...
متن کاملThe Layered Reduction of Hematite (Iron Oxide) Ore by Non-Coking Coal: The Effect of Calcium Carbonate on Reduction
Due to the abundance of the non-coking coal and limitations as well as the high costs of the natural gas, the present study examined the direct reduction of hematite (iron oxide) ore in the temperature range of 800-1000 °C by the non-coking coal volatiles. Approximately, 74.9% of the total amounts of volatiles and gases exit the coal up to 800°C. The onset temperature to exit volatiles from the...
متن کاملHigh Temperature Behavior of Dual Phase Steels
Dual phase steels with different martensite volume fraction and morphology were tensile tested at a temperature range of 25 to 5500C. Stress-strain curves of all steels showed serration flow at temperatures of 250 and 3500C, and smooth flow at the other temperatures. Both yield and ultimate tensile strengths increased with increasing testing temperature up to about 450<sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metallurgical Engineering
سال: 2014
ISSN: 2373-1478,2373-1486
DOI: 10.12677/meng.2014.11004