SUBHARMONIC AND MULTIPLE PERIODIC SOLUTIONS FOR HAMILTONIAN SYSTEMS WITH LOCAL PARTIAL SUBLINEAR NONLINEARITY
نویسندگان
چکیده
منابع مشابه
SUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS SUBLINEAR p–HAMILTONIAN SYSTEMS
Some existence theorems are obtained for subharmonic solutions of nonautonomous p -Hamiltonian systems by the minimax methods in critical point theory. Mathematics subject classification (2010): 34C25.
متن کاملMULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملSubharmonic Solutions for First-order Hamiltonian Systems
In this article, we study the existence of periodic and subharmonic solutions for a class of non-autonomous first-order Hamiltonian systems such that the nonlinearity has a growth at infinity faster than |x|α, 0 ≤ α < 1. We also study the minimality of periods for such solutions. Our results are illustrated by specific examples. The proofs are based on the least action principle and a generaliz...
متن کاملMultiple periodic solutions for superquadratic second-order discrete Hamiltonian systems
Some multiplicity results are obtained for periodic solutions of the nonautonomous superquadratic second-order discrete Hamiltonian systems Duðt 1Þ þ rF ðt; uðtÞÞ 1⁄4 0 8t 2 Z 0096-3 doi:10. q Sup Outsta * Co E-m Plea Com by using critical point theory, especially, a three critical points theorem proposed by Brezis and Nirenberg. 2007 Elsevier Inc. All rights reserved.
متن کاملMultiple periodic solutions for second-order discrete Hamiltonian systems
By applying critical point theory, the multiplicity of periodic solutions to second-order discrete Hamiltonian systems with partially periodic potentials was considered. It is noticed that, in this paper, the nonlinear term is growing linearly and main results extend some present results. c ©2017 all rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2009
ISSN: 2391-4661
DOI: 10.1515/dema-2009-0213