Sum Product Networks for Activity Recognition
نویسندگان
چکیده
منابع مشابه
Sum-Product-Quotient Networks
We present a novel tractable generative model that extends Sum-Product Networks (SPNs) and significantly boosts their power. We call it Sum-Product-Quotient Networks (SPQNs), whose core concept is to incorporate conditional distributions into the model by direct computation using quotient nodes, e.g. P (A|B)= (A,B) P (B) . We provide sufficient conditions for the tractability of SPQNs that gene...
متن کاملCredal Sum-Product Networks
Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic graphical models that allow for marginal inference with polynomial effort. As with other probabilistic models, sum-product networks are often learned from data and used to perform classification. Hence, their results are prone to be unreliable and overconfident. In this work, we develop credal su...
متن کاملDynamic Sum-Product Networks
Inference in dynamic graphical models is known to be hard, except for models with low treewidth structure. This restricts severely the expressive power of these kinds of models. In this document we are proposing a new type of dynamic graphical model that allows one to model complex stochastic processes with unbounded treewidth while guaranteeing tractable exact inferenc e. The proposed dynamic ...
متن کاملGreedy Structure Search for Sum-Product Networks
Sum-product networks (SPNs) are rooted, directed acyclic graphs (DAGs) of sum and product nodes with well-defined probabilistic semantics. Moreover, exact inference in the distribution represented by an SPN is guaranteed to take linear time in the size of the DAG. In this paper we introduce an algorithm that learns the structure of an SPN using a greedy search approach. It incorporates methods ...
متن کاملSum-Product Networks for Hybrid Domains
While all kinds of mixed data—from personal data, over panel and scientific data, to public and commercial data—are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2016
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2015.2465955