Supports for minimal hermitian matrices
نویسندگان
چکیده
منابع مشابه
Congruence of Hermitian Matrices by Hermitian Matrices
Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...
متن کاملUnitary Matrices and Hermitian Matrices
Unitary Matrices and Hermitian Matrices Recall that the conjugate of a complex number a + bi is a − bi. The conjugate of a + bi is denoted a+ bi or (a+ bi)∗. In this section, I’ll use ( ) for complex conjugation of numbers of matrices. I want to use ( )∗ to denote an operation on matrices, the conjugate transpose. Thus, 3 + 4i = 3− 4i, 5− 6i = 5 + 6i, 7i = −7i, 10 = 10. Complex conjugation sati...
متن کاملWigner surmise for Hermitian and non-Hermitian chiral random matrices.
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...
متن کاملDiagonal Norm Hermitian Matrices
If v is a norm on en, let H(v) denote the set of all norm-Hermitians in e nn. Let S be a subset of the set of real diagonal matrices D. Then there exists a norm v such that S = H(v) (or S = H(v) n D) if and only if S contains the identity and S is a subspace of D with a basis consisting of rational vectors. As a corollary, it is shown that, for a diagonable matrix h with distinct eigenvalues .1...
متن کاملEssentially Hermitian matrices revisited
The following case of the Determinantal Conjecture of Marcus and de Oliveira is established. Let A and C be hermitian n × n matrices with prescribed eigenvalues a1, . . . , an and c1, . . . , cn, respectively. Let κ be a non-real unimodular complex number, B = κC, bj = κcj for j = 1, . . . , n. Then det(A− B) ∈ co 8< : n Y j=1 (aj − bσ(j)); σ ∈ Sn 9= ; , where Sn denotes the group of all permut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2020
ISSN: 0024-3795
DOI: 10.1016/j.laa.2019.09.018