Symbolic Computation and Differential Equations: Lie Symmetries
نویسندگان
چکیده
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملLie Symmetries of Differential Equations Byco~uteralgebra
In this paper we restrict ourselves to Lie point symmetries an applications to the fourth order generalized Burgers equation GBE4. Using computer programs under the computer algebra package MATHEMATIC A we find a three dimensional solvable Lie algebra of point symmetries of the GBE4 equation. The similarity reductions due to these symmetries have also been obtained. The idea of applying Lie gro...
متن کاملSymbolic Computation of Local Symmetries of Nonlinear and Linear Partial and Ordinary Differential Equations
The paper illustrates the use of a symbolic software package GeM for Maple to compute local symmetries of nonlinear and linear differential equations (DE). In the cases when a given DE system contains arbitrary functions or parameters, symbolic symmetry classification is performed. Special attention is devoted to the computation of point symmetries of linear PDE systems. Routines are available ...
متن کاملSymbolic Computation of Conservation Laws, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations
Algorithms for the symbolic computation of polynomial conservation laws, generalized symmetries, and recursion operators for systems of nonlinear differential-difference equations (DDEs) are presented. The algorithms can be used to test the complete integrability of nonlinear DDEs. The ubiquitous Toda lattice illustrates the steps of the algorithms, which have been implemented in Mathematica. T...
متن کاملSymbolic Computation of Polynomial Conserved Densities, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations
Algorithms for the symbolic computation of polynomial conserved densities, fluxes, generalized symmetries, and recursion operators for systems of nonlinear differential-difference equations are presented. In the algorithms we use discrete versions of the Fréchet and variational derivatives, as well as discrete Euler and homotopy operators. The algorithms are illustrated for prototypical nonline...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2000
ISSN: 0747-7171
DOI: 10.1006/jsco.1999.0299