Symmetric polynomials, Pascal matrices, and Stirling matrices
نویسندگان
چکیده
منابع مشابه
Symmetric Pascal matrices modulo p
T = 1 1 1 1 2 1 1 3 3 1 .. . . . = exp 0 1 0 0 2 0 0 3 0 . . . with coefficients ti,j = (i j ) . This shows that det(P (n)) = 1 and that P (n) is positive definite for all n ∈ N. It implies furthermore that the characteristic polynomial det(tI(n)−P (n)) = ∑ k=0 αkt k (where I(n) denotes the identity matrix of order n) of P (n) has only positive real roots. The in...
متن کاملPascal Matrices
Every polynomial of degree n has n roots; every continuous function on [0, 1] attains its maximum; every real symmetric matrix has a complete set of orthonormal eigenvectors. “General theorems” are a big part of the mathematics we know. We can hardly resist the urge to generalize further! Remove hypotheses, make the theorem tighter and more difficult, include more functions, move into Hilbert s...
متن کاملCharacteristic polynomials of real symmetric random matrices
It is shown that the correlation functions of the random variables det(λ−X), in which X is a real symmetric N × N random matrix, exhibit universal local statistics in the large N limit. The derivation relies on an exact dual representation of the problem: the k-point functions are expressed in terms of finite integrals over (quaternionic) k × k matrices. However the control of the Dyson limit, ...
متن کاملEigenvalues of Hadamard powers of large symmetric Pascal matrices
Let Sn be the positive real symmetric matrix of order n with (i, j ) entry equal to ( i + j − 2 j − 1 ) , and let x be a positive real number. Eigenvalues of the Hadamard (or entry wise) power S n are considered. In particular for k a positive integer, it is shown that both the Perron root and the trace of S n are approximately equal to 4 4k−1 ( 2n− 2 n− 1 )k . © 2005 Elsevier Inc. All rights r...
متن کاملProperties of Central Symmetric X-Form Matrices
In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2008
ISSN: 0024-3795
DOI: 10.1016/j.laa.2007.09.014