Symmetric tensor categories in characteristic 2

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor and unit for symmetric monoidal categories

Let SMC denote the 2-category with objects small symmetric monoidal categories, 1cells symmetric monoidal functors and 2-cells monoidal natural transformations. It is shown that the category quotient of SMC by the congruence generated by its 2-cells is symmetric monoidal closed. 1 Summary of results Thomason’s famous result claims that symmetric monoidal categories model all connective spectra ...

متن کامل

Tensor product for symmetric monoidal categories

We introduce a tensor product for symmetric monoidal categories with the following properties. Let SMC denote the 2-category with objects small symmetric monoidal categories, arrows symmetric monoidal functors and 2-cells monoidal natural transformations. Our tensor product together with a suitable unit is part of a structure on SMC that is a 2-categorical version of the symmetric monoidal clos...

متن کامل

Symmetric curvature tensor

Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Symmetric Determinantal Representations in Characteristic 2

This paper studies Symmetric Determinantal Representations (SDR) in characteristic 2, that is the representation of a multivariate polynomial P by a symmetric matrix M such that P = det(M), and where each entry of M is either a constant or a variable. We first give some sufficient conditions for a polynomial to have an SDR. We then give a non-trivial necessary condition, which implies that some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2019

ISSN: 0001-8708

DOI: 10.1016/j.aim.2019.05.020