Symplectic Properties of multistep Runge-Kutta methods
نویسندگان
چکیده
منابع مشابه
Some Properties of Symplectic Runge-kutta Methods
We prove that to every rational function R(z) satisfying R(−z)R(z) = 1, there exists a symplectic Runge-Kutta method with R(z) as stability function. Moreover, we give a surprising relation between the poles of R(z) and the weights of the quadrature formula associated with a symplectic Runge-Kutta method.
متن کاملStability and B-convergence properties of multistep Runge-Kutta methods
This paper continues earlier work by the same author concerning the stability and B-convergence properties of multistep Runge-Kutta methods for the numerical solution of nonlinear stiff initial-value problems in a Hilbert space. A series of sufficient conditions and necessary conditions for a multistep Runge-Kutta method to be algebraically stable, diagonally stable, Bor optimally B-convergent ...
متن کاملDiagonally Implicit Symplectic Runge-Kutta Methods with Special Properties
The numerical integration of Hamiltonian systems is considered in this paper. Diagonally implicit Symplectic Runge-Kutta methods with special properties are presented. The methods developed have six and seven stages algebraic order up to 5th and dispersion order up to 8th.
متن کاملUniversity of Cambridge Numerical Analysis Reports Practical Symplectic Partitioned Runge{kutta and Runge{kutta{nystrr Om Methods Practical Symplectic Partitioned Runge{kutta and Runge{kutta{nystrr Om Methods
We present new symmetric fourth and sixth-order symplectic Partitioned Runge{ Kutta and Runge{Kutta{Nystrr om methods. We studied compositions using several extra stages, optimising the eeciency. An eeective error, E f , is deened and an extensive search is carried out using the extra parameters. The new methods have smaller values of E f than other methods found in the literature. When applied...
متن کاملExponentially Fitted Symplectic Runge-Kutta-Nyström methods
In this work we consider symplectic Runge Kutta Nyström (SRKN) methods with three stages. We construct a fourth order SRKN with constant coefficients and a trigonometrically fitted SRKN method. We apply the new methods on the two-dimentional harmonic oscillator, the Stiefel-Bettis problem and on the computation of the eigenvalues of the Schrödinger equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2002
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(02)00260-2