Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway
نویسندگان
چکیده
منابع مشابه
Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway
BACKGROUND The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategie...
متن کاملSynthetic metabolons for metabolic engineering.
It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular locatio...
متن کاملMetabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications.
Engineering cell metabolism for bioproduction not only consumes building blocks and energy molecules (e.g., ATP) but also triggers energetic inefficiency inside the cell. The metabolic burdens on microbial workhorses lead to undesirable physiological changes, placing hidden constraints on host productivity. We discuss cell physiological responses to metabolic burdens, as well as strategies to i...
متن کاملReview of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae
One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progre...
متن کاملEngineering of a xylose metabolic pathway in Rhodococcus strains.
The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbial Cell Factories
سال: 2012
ISSN: 1475-2859
DOI: 10.1186/1475-2859-11-120