Systematic Comparison of Supervised Learning Methods to Reduce Calibration Effort in Engine Control Development

نویسندگان

چکیده

Complexity of engine control systems is continuously growing due to an increased number subsystems and the need for robust performance. For traditional map-based as well state-of-the-art model-based approaches, this will lead unacceptable development costs time future engines. Parametrization embedded models using supervised learning regression methods can immensely reduce calibration parameters hence effort. However, a methodology performance assessment different promising data-driven modelling currently lacking. In paper, systematic that assesses model inaccuracy, also implementation aspects such effort computational complexity introduced. This method applied assess potential Supervised Learning (SL) parametrizing feedforward controller modern diesel air-path controller. Using requirements analysis specified criteria, two were selected: artificial neural networks (ANN) support vector machines (SVM). After careful data selection training, compared with benchmark controller, which uses physics-based model. From simulation results, it shown 97% reduction in both be realized. standard test cycle, cumulative out NOx emissions based controllers are close allowable inaccuracy 10% Among methods, ANN shows best studied criteria complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

A Comparison of Machine Learning Methods for Software Effort Estimation

In this study we aimed to draw a big comparative picture of the state of the art machine learning approaches for the software effort estimation problem. For this purpose, several datasets which were obtained from Promise data repository were used for testing various machine learning techniques. The results showed that, decision trees or rule induction based classifiers (i.e. M5P trees) gave par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2022

ISSN: ['2405-8963', '2405-8971']

DOI: https://doi.org/10.1016/j.ifacol.2022.09.173