Tables of binomial coefficients and Stirling numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Certain Sums of Stirling Numbers with Binomial Coefficients

We study two sums involving the Stirling numbers and binomial coefficients. We find their closed forms, and discuss the connection between these sums. Dedicated to the memory of our mentors, Professors Leonard Carlitz and Albert Nijenhuis

متن کامل

Catalan Triangle Numbers and Binomial Coefficients

The binomial coefficients and Catalan triangle numbers appear as weight multiplicities of the finite-dimensional simple Lie algebras and affine Kac–Moody algebras. We prove that any binomial coefficient can be written as weighted sums along rows of the Catalan triangle. The coefficients in the sums form a triangular array, which we call the alternating Jacobsthal triangle. We study various subs...

متن کامل

Binomial Coefficients , Catalan Numbers and Lucas Quotients

Let p be an odd prime and let a, m ∈ Z with a > 0 and p ∤ m. In this paper we determine p a −1 k=0 2k k+d /m k mod p 2 for d = 0, 1; for example, p a −1 k=0 2k k m k ≡ m 2 − 4m p a + m 2 − 4m p a−1 u p−(m 2 −4m p) (mod p 2), where (−) is the Jacobi symbol and {u n } n0 is the Lucas sequence given by u 0 = 0, u 1 = 1 and u n+1 = (m − 2)u n − u n−1 (n = 1, 2, 3,. . .). As an application, we deter...

متن کامل

-Catalan Numbers and Squarefree Binomial Coefficients

In this paper we consider the generalized Catalan numbers F (s, n) = 1 (s−1)n+1 ( sn n ) , which we call s-Catalan numbers. We find all natural numbers n such that for p prime, p divides F (p, n), q ≥ 1 and all distinct residues of F (p, n) (mod p), q = 1, 2. As a byproduct we settle a question of Hough and the late Simion on the divisibility of the 4-Catalan numbers by 4. We also prove that ( ...

متن کامل

p-Catalan Numbers and Squarefree Binomial Coefficients

In this paper we consider the generalized Catalan numbers F (s, n) = 1 (s−1)n+1 ( sn n ) , which we call s-Catalan numbers. For p prime, we find all positive integers n such that p divides F (p, n), and also determine all distinct residues of F (p, n) (mod p), q ≥ 1. As a byproduct we settle a question of Hough and the late Simion on the divisibility of the 4-Catalan numbers by 4. In the second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences

سال: 1976

ISSN: 0098-8979

DOI: 10.6028/jres.080b.016