Techniques to cope with missing data in host–pathogen protein interaction prediction
نویسندگان
چکیده
منابع مشابه
Techniques to cope with missing data in host–pathogen protein interaction prediction
MOTIVATION Approaches that use supervised machine learning techniques for protein-protein interaction (PPI) prediction typically use features obtained by integrating several sources of data. Often certain attributes of the data are not available, resulting in missing values. In particular, our host-pathogen PPI datasets have a large fraction, in the range of 58-85% of missing values, which make...
متن کاملBankruptcy Prediction with Missing Data
Bankruptcy prediction have been widely studied as a binary classification problem using financial ratios methodologies. When calculating the ratios, it is common to confront missing data problem. Thus, this paper proposes a classification method Ensemble Nearest Neighbors (ENN) to solve it. ENN uses different nearest neighbors as ensemble classifiers, then make a linear combination of them. Ins...
متن کاملEnsemble missing data techniques for software effort prediction
Constructing an accurate effort prediction model is a challenge in software engineering. The development and validation of models that are used for prediction tasks require good quality data. Unfortunately, software engineering datasets tend to suffer from the incompleteness which could result to inaccurate decision making and project management and implementation. Recently, the use of machine ...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملA method to solve the problem of missing data, outlier data and noisy data in order to improve the performance of human and information interaction
Abstract Purpose: Errors in data collection and failure to pay attention to data that are noisy in the collection process for any reason cause problems in data-based analysis and, as a result, wrong decision-making. Therefore, solving the problem of missing or noisy data before processing and analysis is of vital importance in analytical systems. The purpose of this paper is to provide a metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2012
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/bts375