Temporal Workload-Aware Replicated Partitioning for Social Networks
نویسندگان
چکیده
منابع مشابه
Workload Aware Replicated Datapartitioning for Twitter
Most of the queries in twitter include multiuser operations. When a user login to twitter it requests the most recent tweets of whom he follows. These data may be present in different servers. The expense of these queries depends on how the data is partitioned. Existing solution for data partitioning involve hash or graph based partition. In this paper a new method for reducing the interaction ...
متن کاملWorkload-aware Streaming Graph Partitioning
Partitioning large graphs, in order to balance storage and processing costs across multiple physical machines, is becoming increasingly necessary as the typical scale of graph data continues to increase. A partitioning, however, may introduce query processing latency due to inter-partition communication overhead, especially if the query workload exhibits skew, frequently traversing a limited su...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملPerformance and Energy Aware Workload Partitioning on Heterogeneous Platforms
Heterogeneous platforms which employ a mix of CPUs and accelerators such as GPUs have been widely used in the high-performance computing area [1]. Such heterogeneous platforms have the potential to offer higher performance at lower energy cost than homogeneous platforms. However, it is rather challenging to actually achieve the high performance and energy efficiency promised by heterogeneous pl...
متن کاملAQWA: Adaptive Query-Workload-Aware Partitioning of Big Spatial Data
The unprecedented spread of location-aware devices has resulted in a plethora of location-based services in which huge amounts of spatial data need to be efficiently processed by large-scale computing clusters. Existing cluster-based systems for processing spatial data employ static data-partitioning structures that cannot adapt to data changes, and that are insensitive to the query workload. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2014
ISSN: 1041-4347
DOI: 10.1109/tkde.2014.2302291