TGF-ß Regulates Enamel Mineralization and Maturation through KLK4 Expression
نویسندگان
چکیده
منابع مشابه
TGF-ß Regulates Enamel Mineralization and Maturation through KLK4 Expression
Transforming growth factor-ß (TGF-ß) signaling plays an important role in regulating crucial biological processes such as cell proliferation, differentiation, apoptosis, and extracellular matrix remodeling. Many of these processes are also an integral part of amelogenesis. In order to delineate a precise role of TGF-ß signaling during amelogenesis, we developed a transgenic mouse line that harb...
متن کاملFluoride Alters Klk4 Expression in Maturation Ameloblasts through Androgen and Progesterone Receptor Signaling
Fluorosed maturation stage enamel is hypomineralized in part due to a delay in the removal of matrix proteins to inhibit final crystal growth. The delay in protein removal is likely related to reduced expression of kallikrein-related peptidase 4 (KLK4), resulting in a reduced matrix proteinase activity that found in fluorosed enamel. Klk4 transcription is known to be regulated in other cell typ...
متن کاملProtein-mediated enamel mineralization.
Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows t...
متن کاملTGF-β Signaling Regulates Cementum Formation through Osterix Expression
TGF-β/BMPs have widely recognized roles in mammalian development, including in bone and tooth formation. To define the functional relevance of the autonomous requirement for TGF-β signaling in mouse tooth development, we analyzed osteocalcin-Cre mediated Tgfbr2 (OC(Cre)Tgfbr2(fl/fl)) conditional knockout mice, which lacks functional TGF-β receptor II (TβRII) in differentiating cementoblasts and...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0082267