The Boltzmann Equation Near a Rotational Local Maxwellian

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation

For the spatially homogeneous Boltzmann equation with cutoff hard potentials it is shown that solutions remain bounded from above, uniformly in time, by a Maxwellian distribution, provided the initial data have a Maxwellian upper bound. The main technique is based on a comparison principle that uses a certain dissipative property of the linear Boltzmann equation. Implications of the technique t...

متن کامل

Local Hilbert Expansion for the Boltzmann Equation

We revisit the classical work of Caflisch [C] for compressible Euler limit of the Boltzmann equation. By using a new L2-L∞ method, we prove the validity of the Hilbert expansion before shock formathions in the Euler system with moderate temperature variation.

متن کامل

Why the Maxwellian Distribution is the Attractive Fixed Point of the Boltzmann Equation

We know that the velocity distribution of a gas of classical particles in equilibrium is the Maxwellian distribution. This is a very well experimentally confirmed fact. The approach in kinetic theory that gives the time evolution of the velocity distribution of a gas of particles is the Boltzmann equation. Hence, the Boltzmann equation should have the Maxwellian distribution as an attractive fi...

متن کامل

Propagation of Gevrey Regularity for Solutions of the Boltzmann Equation for Maxwellian Molecules

We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.

متن کامل

C 0 Approximation on the Spatially Homogeneous Boltzmann Equation for Maxwellian Molecules

In this paper we study the viscosity analysis of the spatially homogeneous Boltzmann equation for Maxwellian molecules. We first show that the global existence in time of the mild solution of the viscosity equation ( , ) t v f Q f f f          . We then study the asymptotic behaviour of the mild solution as the coefficients 0    , and an estimate on 0 f f   is derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematical Analysis

سال: 2012

ISSN: 0036-1410,1095-7154

DOI: 10.1137/11084981x