The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
نویسندگان
چکیده
In this paper, we introduce the local and global mixed Morrey-type spaces show some properties. Besides, investigate boundedness of fractional integral operators $$I_\alpha $$ in these spaces. Firstly, sufficient necessary conditions mixed-norm Lebesgue for Then, prove $$I_{\alpha }$$ by Hardy operators’ weighted Furthermore, obtain corollaries.
منابع مشابه
Generalized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces
In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...
متن کاملBoundedness of the Fractional Maximal Operator in Local Morrey-type Spaces
The problem of the boundedness of the fractional maximal operator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.
متن کاملWeighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces
In this paper, we first introduce some new Morrey-type spaces containing generalized Morrey space and weighted Morrey space with two weights as special cases. Then we give the weighted strong type and weak type estimates for fractional integral operators [Formula: see text] in these new Morrey-type spaces. Furthermore, the weighted strong type estimate and endpoint estimate of linear commutator...
متن کاملBoundedness of Multilinear Integral Operators and Their Commutators on Generalized Morrey Spaces
متن کامل
Boundedness of the Bergman Type Operators on Mixed Norm Spaces
Conditions sufficient for boundedness of the Bergman type operators on certain mixed norm spaces Lp,q(φ) (0 < p < 1, 1 < q <∞) of functions on the unit ball of Cn are given, and this is used to solve Gleason’s problem for the mixed norm spaces Hp,q(φ) (0 < p < 1, 1 < q <∞).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Positivity
سال: 2022
ISSN: ['1572-9281', '1385-1292']
DOI: https://doi.org/10.1007/s11117-022-00886-1