The $C^*$-algebras of codimension one foliations without holonomy.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Algebras of Vector Fields and Codimension One Foliations

LIE ALGEBRAS OF VECTOR FIELDS AND CODIMENSION ONE FOLIATIONS

متن کامل

Codimension One Symplectic Foliations

We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.

متن کامل

Elimination of Resonances in Codimension One Foliations

The problem of reduction of singularities for germs of codimension one foliations in dimension three has been solved by Cano in [3]. The author divides the proof in two steps. The first one consists in getting pre-simple points and the second one is the passage from pre-simple to simple points. In arbitrary dimension of the ambient space the problem is open. In this paper we solve the second st...

متن کامل

APPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS

Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.

متن کامل

Affine Holonomy Foliations

We establish a geometric condition that determines when a type III von Neumann algebra arises from a foliation whose holonomy becomes affine with respect to a suitable transverse coordinate system. Under such an assumption the Godbillon-Vey class of the foliation becomes trivial in contrast to the case considered in Connes’s famous theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1985

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12090