The Compensation Method Applied to a One-Product Production/Inventory Problem
نویسندگان
چکیده
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Sum-product Estimates Applied to Waring’s Problem Mod P
Let γ(k, p) denote Waring’s number (mod p) and δ(k, p) denote the ± Waring’s number (mod p). We use sum-product estimates for |nA| and |nA− nA|, following the method of Glibichuk and Konyagin, to estimate γ(k, p) and δ(k, p). In particular, we obtain explicit numerical constants in the Heilbronn upper bounds: γ(k, p) ≤ 83 k1/2, δ(k, p) ≤ 20 k1/2 for any positive k not divisible by (p− 1)/2.
متن کاملSum - Product Estimates Applied to Waring ’ S Problem Mod
Let γ(k, p) denote Waring’s number (mod p) and δ(k, p) denote the ± Waring’s number (mod p). We use sum-product estimates for |nA| and |nA − nA|, following the method of Glibichuk and Konyagin, to estimate γ(k, p) and δ(k, p). In particular, we obtain explicit numerical constants in the Heilbronn upper bounds: γ(k, p) ≤ 83 k, δ(k, p) ≤ 20 k for any positive k not divisible by (p− 1)/2.
متن کاملA Jacobi–Davidson type method for the product eigenvalue problem
We propose a Jacobi–Davidson type technique to compute selected eigenpairs of the product eigenvalue problem Am · · ·A1x = λx, where the matrices may be large and sparse. To avoid difficulties caused by a high condition number of the product matrix, we split up the action of the product matrix and work with several search spaces. We generalize the Jacobi–Davidson correction equation, and the ha...
متن کاملA Swarm Intelligence Method Combined to Evolutionary Game Theory Applied to the Resources Allocation Problem
This paper addresses an allocation problem and proposes a solution using a swarm intelligence method. The application of swarm intelligence has to be discrete. This allocation problem can be modelled as a multiobjective optimization problem where the authors minimize the time and the distance of the total travel in a logistic context. This study uses a hybrid Discrete Particle Swarm Optimizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 1981
ISSN: 0364-765X,1526-5471
DOI: 10.1287/moor.6.2.246