The Complexity of Independent Set Reconfiguration on Bipartite Graphs
نویسندگان
چکیده
منابع مشابه
The complexity of independent set reconfiguration on bipartite graphs
We settle the complexity of the Independent Set Reconfiguration problem on bipartite graphs under all three commonly studied reconfiguration models. We show that under the token jumping or token addition/removal model the problem is NP-complete. For the token sliding model, we show that the problem remains PSPACE-complete.
متن کاملThe independent set sequence of regular bipartite graphs
Let it(G) be the number of independent sets of size t in a graph G. Alavi, Erdős, Malde and Schwenk made the conjecture that if G is a tree then the independent set sequence {it(G)}t≥0 of G is unimodal; Levit and Mandrescu further conjectured that this should hold for all bipartite G. We consider the independent set sequence of finite regular bipartite graphs, and graphs obtained from these by ...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولDominating Set on Bipartite Graphs
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O∗(2n−z), where n is the number of vertices of G. As a consequence, our algorithm is able t...
متن کاملExtension Complexity of Stable Set Polytopes of Bipartite Graphs
The extension complexity xc(P ) of a polytope P is the minimum number of facets of a polytope that affinely projects to P . Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. Since G is perfect, it is easy to see that n 6 xc(STAB(G)) 6 n+m. We improve both of these bounds. For the upper bound, we show that xc(ST...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Algorithms
سال: 2019
ISSN: 1549-6325,1549-6333
DOI: 10.1145/3280825