The complexity of lifted inequalities for the knapsack problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Lifted Inequalities for the Knapsack Problem

Hartvigsen, D. and E. Zemel, The complexity of lifted inequalities for the knapsack problem, Discrete Applied Mathematics 39 (1992) 11. 123. It is well known that one can obtain facets and valid inequalities for the knapsack polytope by lifting simple inequalities associated with minimal covers. We study the complexity of lifting. We show that recognizing integral lifted facets or valid inequal...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem

The 0-1 Multidimensional Knapsack Problem (0-1 MKP) is a wellknown (and strongly NP-hard) combinatorial optimization problem with many applications. Up to now, the majority of upper bounding techniques for the 0-1 MKP have been based on Lagrangian or surrogate relaxation. We show that good upper bounds can be obtained by a cutting plane method based on lifted cover inequalities (LCIs). As well ...

متن کامل

Lifted Cover Inequalities for Integer Programs Complexity

We investigate several complexity issues related to branch and cut algorithms for integer programming based on lifted cover inequalities LCIs We show that given a fractional point determining a violated LCI over all minimal covers is NP hard The main result is that there exists a class of knapsack instances for which any branch and cut algorithm based on LCIs has to evaluate an exponential numb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1992

ISSN: 0166-218X

DOI: 10.1016/0166-218x(92)90162-4