THE DIVISOR FUNCTION IN ARITHMETIC PROGRESSIONS MODULO PRIME POWERS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The divisor function over arithmetic progressions

provided x is sufficiently large. An asymptotic formula of type (1) Df (x; q, a) = (1 +O((log x)))Df (x; q) , in which the error term is smaller than the main term by a suitable power of log x, is good enough for basic applications. More important than the size of the error term is the range where (1) holds uniformly with respect to the modulus q. In this paper we consider the problem for the d...

متن کامل

Congruences modulo Prime Powers

Let p be any prime, and let α and n be nonnegative integers. Let r ∈ Z and f (x) ∈ Z[x]. We establish the congruence p deg f k≡r (mod p α) n k (−1) k f k − r p α ≡ 0 mod p ∞ i=α ⌊n/p i ⌋ (motivated by a conjecture arising from algebraic topology), and obtain the following vast generalization of Lucas' theorem: If α > 1 and l, s, t are nonnegative integers with s, t < p, then 1 ⌊n/p α−1 ⌋! k≡r (...

متن کامل

Exponential Sums modulo Prime Powers

where p is a prime power with m ≥ 2, χ is a multiplicative character (mod p), epm(·) is the additive character, epm(x) = e 2πix pm , and f, g are rational functions with integer coefficients. It is understood, that the sum is only over values of x for which g and f and both defined as functions on Z/(p), and g is nonzero (mod p). The sum is trivial if f and g are both constants, so we shall alw...

متن کامل

Combinatorial Congruences modulo Prime Powers

Let p be any prime, and let α and n be nonnegative integers. Let r ∈ Z and f(x) ∈ Z[x]. We establish the congruence p f ∑ k≡r (mod pα) (n k ) (−1)f ( k − r pα ) ≡ 0 ( mod p ∑∞ i=α n/p i ) (motivated by a conjecture arising from algebraic topology) and obtain the following vast generalization of Lucas’ theorem: If α is greater than one, and l, s, t are nonnegative integers with s, t < p, then 1 ...

متن کامل

On the Average Value of Divisor Sums in Arithmetic Progressions

We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2016

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579316000024