The excess of complex Hadamard matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The excess of complex Hadamard matrices

A complex Hadamard matrix, C, of order n has elements 1, -1, i, i and satisfies CC* = nIn where C* denotes the conjugate transpose of C. Let C = [cij] be a complex Hadamard matrix of order n. S(C) = ∑ cij is called the sum of C. 0(C) = │S(C)│ is called the excess of C. We study the excess of complex Hadamard matrices. As an application many real Hadamard matrices of large and maximal excess are...

متن کامل

Parametrizing complex Hadamard matrices

Abstract. The purpose of this paper is to introduce new parametric families of complex Hadamard matrices in two different ways. First, we prove that every real Hadamard matrix of order N ≥ 4 admits an affine orbit. This settles a recent open problem of Tadej and Życzkowski [11], who asked whether a real Hadamard matrix can be isolated among complex ones. In particular, we apply our construction...

متن کامل

Families of Complex Hadamard Matrices

What is the dimension of a smooth family of complex Hadamard matrices including the Fourier matrix? We address this problem with a power series expansion. Studying all dimensions up to 100 we find that the first order result is misleading unless the dimension is 6, or a power of a prime. In general the answer depends critically on the prime number decomposition of the dimension. Our results sug...

متن کامل

The excess of Hadamard matrices and optimal designs

Hadamard matrices of order n with maximum excess o(n) are constructed for n = 40, 44, 48, 52, 80, 84. The results are: o(40)= 244, o(44)= 280, o(48)= 324, o(52)= 364, o(80)= 704, 0(84) = 756. A table is presented listing the known values of o(n) 0< n ~< 100 and the corresponding Hadamard matrices are constructed. For the remaining values of n = 56, 60, 68, 72, 76, 88, 92, 96 the largest values ...

متن کامل

Trades in complex Hadamard matrices

A trade in a complex Hadamard matrix is a set of entries which can be changed to obtain a different complex Hadamard matrix. We show that in a real Hadamard matrix of order n all trades contain at least n entries. We call a trade rectangular if it consists of a submatrix that can be multiplied by some scalar c 6= 1 to obtain another complex Hadamard matrix. We give a characterisation of rectang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 1993

ISSN: 0911-0119,1435-5914

DOI: 10.1007/bf01195326