The first Pontrjagin classes of homotopy complex projective spaces

نویسندگان

چکیده

Let M2n be an oriented closed smooth manifold homotopy equivalent to the complex projective space CP(n). The main purpose of this paper is show that when n even, difference between first Pontrjagin class and CP(n) divisible by 16. As a geometric application result, we prove Kervaire sphere dimension 4k+1 does not admit any free circle group action if k+1 power 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces

We investigate the rational homotopy classification problem for the components of some function spaces with Sn or cPn as target space.

متن کامل

A Combinatorial Formula for the Pontrjagin Classes

A combinatorial formula for the Pontrjagin classes of a triangulated manifold is given. The main ingredients are oriented matroid theory and a modified formulation of Chern-Weil theory.

متن کامل

biquaternions lie algebra and complex-projective spaces

in this paper, lie group structure and lie algebra structure of unit complex 3-sphere     are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of     and the special complex unitary matrices    (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers    .  the relat...

متن کامل

Local formulae for combinatorial Pontrjagin classes

By p(|K|) denote the characteristic class of a combinatorial manifold K given by the polynomial p in Pontrjagin classes of K. We prove that for any polynomial p there exists a function taking each combinatorial manifold K to a rational simplicial cycle z(K) such that: (1) the Poincaré dual of z(K) represents the cohomology class p(|K|); (2) a coefficient of each simplex ∆ in the cycle z(K) is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2021

ISSN: ['1879-3207', '0166-8641']

DOI: https://doi.org/10.1016/j.topol.2020.107447