The Galois relation x1=x2+x3for finite simple groups
نویسندگان
چکیده
منابع مشابه
Finite Abelian Groups as Galois Groups
The purpose of this note is to record for my algebra class a proof of the Inverse Galois Problem for finite abelian groups. Recall that the Inverse Galois Problem is stated as follows: Given a finite group G, is there a Galois extension Q ⊆ K such Gal(K/Q) = G? The crucial point in the problem is that the base field is Q, since given any finite group G, there is a Galois extension of fields F ⊆...
متن کاملFinite Permutation Groups and Finite Simple Groups
In the past two decades, there have been far-reaching developments in the problem of determining all finite non-abelian simple groups—so much so, that many people now believe that the solution to the problem is imminent. And now, as I correct these proofs in October 1980, the solution has just been announced. Of course, the solution will have a considerable effect on many related areas, both wi...
متن کاملGalois reconstruction of finite quantum groups
Let C be a (small) category and let F : C −→ Malgf be a functor, where Malgf is the category of finite-dimensional measured algebras over a field k (or Frobenius algebras). We construct a universal Hopf algebra Aaut(F ) such that F factorizes through a functor F : C −→ Mcoalgf(Aaut(F )), where Mcoalgf(Aaut(F )) is the category of finite-dimensional measured Aaut(F )-comodule algebras. This gene...
متن کاملSimple groups of finite
The Algebraicity Conjecture treats model-theoretic foundations of algebraic group theory. It states that any simple group of finite Morley rank is an algebraic group over an algebraically closed field. In the mid-1990s a view was consolidated that this project falls into four cases of different flavour: even type, mixed type, odd type, and degenerate type. This book contains a proof of the conj...
متن کاملA Simple Classification of Finite Groups of Order p2q2
Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, respectively. In this paper, we show that up to isomorphism, there are four groups of order p^2q^2 when Q and P are cyclic, three groups when Q is a cyclic and P is an elementary ablian group, p^2+3p/2+7 groups when Q is an elementary ablian group an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2007
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa127-3-7