The Gauss Map of Complete Minimal Surfaces with Finite Total Curvature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Embedded Minimal Surfaces of Finite Total Curvature

2 Basic theory and the global Weierstrass representation 4 2.1 Finite total curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 The example of Chen-Gackstatter . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Embeddedness and finite total curvature: necessary conditions . . . . . . . 20 2.3.1 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

The Space of Complete Minimal Surfaces with Finite Total Curvature as Lagrangian Submanifold

The spaceM of nondegenerate, properly embedded minimal surfaces in R3 with finite total curvature and fixed topology is an analytic lagrangian submanifold of Cn, where n is the number of ends of the surface. In this paper we give two expressions, one integral and the other pointwise, for the second fundamental form of this submanifold. We also consider the compact boundary case, and we show tha...

متن کامل

On the Gauss Curvature of Minimal Surfaces!?)

1. Summary of results. The following is known: let 5 be a minimal surface defined by z=f(x, y) over the region D:x2+y2<R2, and let p be the point of S over the origin. Let W= (1+fl+fl)112 at p. Then the Gauss curvature K at p satisfies \K\ Sc/R2W2. The best numerical value of c known previously was 12.25. This inequality is simultaneously sharpened and generalized. First of all, it is proved th...

متن کامل

On Complete Nonorientable Minimal Surfaces with Low Total Curvature

We classify complete nonorientable minimal surfaces in R3 with total curvature −8π.

متن کامل

Modern Examples of Complete Embedded Minimal Surfaces of Finite Total Curvature

1. Introduction. A natural class of minimal surfaces to study are the embedded mini­ mal surfaces — those which have no self­intersections as a subset of R 3. Of course, every point of a surface immersed in R 3 has a neighborhood which is embedded, so by itself this isn't a very interesting restriction. However, an embedded minimal surface pro­ duced in this way is clearly extendable and thus n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Anais da Academia Brasileira de Ciências

سال: 2013

ISSN: 0001-3765

DOI: 10.1590/0001-3765201376911