The Hess–Appelrot system. II. Perturbation and limit cycles
نویسندگان
چکیده
منابع مشابه
The number of limit cycles of a quintic Hamiltonian system with perturbation
We consider number of limit cycles of perturbed quintic Hamiltonian system with perturbation in the form of (2n+2m) or (2n+2m+1) degree polynomials. We show that the perturbed system has at most n + 2m limit cycles. For m = 1 and n = 1 we showed that the perturbed system can have at most one limit cycles. If m = 1 and n = 2 we give some general conditions based on coefficients of the perturbed ...
متن کاملLimit cycles appearing from the perturbation of a system with a multiple line of critical points
Consider the planar ordinary differential equation ẋ = −y(1 − y)m, ẏ = x(1 − y)m, where m is a positive integer number. We study the maximum number of zeroes of the Abelian integral M that controls the limit cycles that bifurcate from the period annulus of the origin when we perturb it with an arbitrary polynomial vector field. One of the key points of our approach is that we obtain a simple ex...
متن کاملBifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation
This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the norm...
متن کاملLimit cycles for a quadratic perturbation of a quadratic polynomial system
The weak Hilbert 16th problem was solved completely in the quadratic case; that is, the least upper bound of the number of zeros of the Abelian integrals associated with quadratic perturbations of quadratic Hamiltonian systems is known. See [3, 4, 5, 8, 10] and the references therein. The next natural step is to consider the same problem for quadratic integrable but non-Hamiltonian systems. Mos...
متن کاملEight Limit cycles around a Center in quadratic Hamiltonian System with Third-Order perturbation
In this paper, we show that generic planar quadratic Hamiltonian systems with third degree polynomial perturbation can have eight small-amplitude limit cycles around a center. We use higher-order focus value computation to prove this result, which is equivalent to the computation of higher-order Melnikov functions. Previous results have shown, based on first-order and higher-order Melnikov func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2012
ISSN: 0022-0396
DOI: 10.1016/j.jde.2011.06.012