The Hida calculus approach to multiparameter stochastic integration
نویسندگان
چکیده
منابع مشابه
A Temporal Approach to Stochastic Network Calculus
Stochastic network calculus is a newly developed theory for stochastic ser-vice guarantee analysis of computer networks. In the current stochastic net-work calculus literature, its fundamental models are based on the cumulativeamount of traffic or cumulative amount of service. However, there are net-work scenarios where direct application of such models is difficult. This pa...
متن کاملAn Analytic Approach to Stochastic Calculus
Version française abrégée Soit G un groupe de Lie connexe de dimension d dont l’algèbre de Lie G a pour base (X1, . . . , Xd). Soient (Bt)t∈IR+ un mouvement brownien à valeurs dans G, et N une mesure aléatoire de Poisson sur G× IR+, d’intensité μ(dσ)dt. Soit H l’ensemble des fonctions de Cc(G× IR+) qui s’annulent sur {e} × IR+ et telles que σ 7→ f(σ, t) est différentiable en e, t ∈ IR+. Nous dé...
متن کاملFunctional-calculus approach to stochastic differential equations.
The connection between stochastic differential equations and associated Fokker-Planck equations is elucidated by the full functional calculus. One-variable equations with either additive or multiplicative noise are considered. The central focus is on approximate Fokker-Planck equations which describe the consequences of using "colored" noise, which has an exponential correlation function and a ...
متن کاملIntegration with Respect to Fractal Functions and Stochastic Calculus Ii
The link between fractional and stochastic calculus established in part I of this paper is investigated in more detail. We study a fractional integral operator extending the Lebesgue–Stieltjes integral and introduce a related concept of stochastic integral which is similar to the so–called forward integral in stochastic integration theory. The results are applied to ODE driven by fractal functi...
متن کاملOn the rough-paths approach to non-commutative stochastic calculus
We study different possibilities to apply the principles of rough paths theory in a non-commutative probability setting. First, we extend previous results obtained by Capitaine, Donati-Martin and Victoir in Lyons’ original formulation of rough paths theory. Then we settle the bases of an alternative non-commutative integration procedure, in the spirit of Gubinelli’s controlled paths theory, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese journal of mathematics. New series
سال: 1996
ISSN: 0289-2316,1861-3624
DOI: 10.4099/math1924.22.369