The ideal membership problem and polynomial identity testing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ideal membership problem and polynomial identity testing

Given a monomial ideal I = 〈m1,m2, · · · ,mk〉 where mi are monomials and a polynomial f as an arithmetic circuit the Ideal Membership Problem is to test if f ∈ I . We study this problem and show the following results. (a) If the ideal I = 〈m1,m2, · · · ,mk〉 for a constant k then there is a randomized polynomial-time membership algorithm to test if f ∈ I . This result holds even for f given by a...

متن کامل

On the Parallel Complexity of the Polynomial Ideal Membership Problem

The complexity of the polynomial ideal membership problem over arbitrary fields within the framework of arithmetic networks is investigated. We prove that the parallel complexity of this problem is single exponential over any infinite field. Our lower bound is obtained by combining a modification of Mayr and Meyer's (1982) key construction with an elementary degree bound. 1998 Academic Press, Inc.

متن کامل

Ideal Membership Problem

The Ideal Membership Problem is as follows: given f0, f1, . . . , fm ∈ K[x1, . . . , xn], is f0 ∈ 〈f1, . . . , fm〉, where 〈f1, . . . , fm〉 denotes the ideal generated by the fi? An equivalent formulation is: are there q1, . . . , qm ∈ K[x1, . . . , xn] such that f0 = ∑m i=1 qifi? We will solve this question by using Gröbner bases. That is, a Gröbner basis is a “nice” representation of an ideal,...

متن کامل

Polynomial Identity Testing

holds. A natural interpretation could be the following: Definition for interpretation 1: p(x1, x2, . . . , xn) ≡ 0 if for each a1, a2, . . . , an ∈ D, p(a1, a2, . . . , an) = 0 where D denotes the domain in which the polynomial is defined. However, there’s another interpretation: Definition for interpretation 2: p(x1, x2, . . . , xn) ≡ 0 if in the form where the polynomial is written as the lin...

متن کامل

Ideal Membership in Polynomial Rings over the Integers

We will reproduce a proof, using Hermann’s classical method, in Section 3 below. Note that the computable character of this bound reduces the question of whether f0 ∈ (f1, . . . , fn) for given fj ∈ F [X ] to solving an (enormous) system of linear equations over F . Hence, in this way one obtains a (naive) algorithm for solving the ideal membership problem for F [X ] (provided F is given in som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 2010

ISSN: 0890-5401

DOI: 10.1016/j.ic.2009.06.003