The infinite Lanczos method for symmetric nonlinear eigenvalue problems
نویسندگان
چکیده
Abstract A new iterative method for solving large scale symmetric nonlinear eigenvalue problems is presented. We firstly derive an infinite dimensional linearization of the problem, then we apply indefinite Lanczos to this specific linearization, resulting in a short-term recurrence. show how, under assumption on starting vector, can be carried out finite arithmetic and how exploitation problem structure leads improvements terms computation time. The eigenpair approximations are extracted with Rayleigh-Ritz procedure combined choice projection space. illustrate extraction technique resolves instability issues that may occur due loss orthogonality many standard Lanczos-type methods.
منابع مشابه
Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems
For real symmetric eigenvalue problems, there are a number of algorithms that are mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred because it uses signiicantly fewer arithmetic operations per iteration. To limit the maximum memory usage, these algorithms are often restarted. In re...
متن کاملAn Implicitly Restarted Lanczos Method for Large Symmetric Eigenvalue Problems
The Lanczos process is a well known technique for computing a few, say k, eigenvalues and associated eigenvectors of a large symmetric n×n matrix. However, loss of orthogonality of the computed Krylov subspace basis can reduce the accuracy of the computed approximate eigenvalues. In the implicitly restarted Lanczos method studied in the present paper, this problem is addressed by fixing the num...
متن کاملAn Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems
where T (λ) ∈ R is a family of symmetric matrices depending on a parameter λ ∈ J , and J ⊂ R is an open interval which may be unbounded. As in the linear case T (λ) = λI −A a parameter λ is called an eigenvalue of T (·) if problem (1) has a nontrivial solution x 6= 0 which is called a corresponding eigenvector. We assume that the matrices T (λ) are large and sparse. For sparse linear eigenvalue...
متن کاملThe Spectral Transformation Lanczos Method for the Numerical Solution of Large Sparse Generalized Symmetric Eigenvalue Problems
A new algorithm is developed which computes a specified number of eigenvalues in any part of the spectrum of a generalized symmetric matrix eigenvalue problem. It uses a linear system routine (factorization and solution) as a tool for applying the Lanczos algorithm to a shifted and inverted problem. The algorithm determines a sequence of shifts and checks that all eigenvalues get computed in th...
متن کاملParallel Efficiency of the Lanczos Method for Eigenvalue Problems
Two of the commonly used versions of the Lanczos method for eigenvalues problems are the shift-and-invert Lanczos method and the restarted Lanczos method. In this talk, we will address two questions, is the shift-and-invert Lanczos method a viable option on massively parallel machines and which one is more appropriate for a given eigenvalue problem?
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calcolo
سال: 2023
ISSN: ['0008-0624', '1126-5434']
DOI: https://doi.org/10.1007/s10092-023-00511-x