The Integer Knapsack Cover Polyhedron

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the facets of the mixed-integer knapsack polyhedron

We study the mixed–integer knapsack polyhedron, that is, the convex hull of the mixed–integer set defined by an arbitrary linear inequality and the bounds on the variables. We describe facet–defining inequalities of this polyhedron that can be obtained through sequential lifting of inequalities containing a single integer variable. These inequalities strengthen and/or generalize known inequalit...

متن کامل

Faces of an integer polyhedron.

In (1) x is an m + n vector, b is an integer m-vector, c an m + n vector, and A an m X (m + n) integer matrix containing an m X m identity matrix. A is assumed to be rearranged and partitioned into an m X m optimal basis matrix B for the noninteger problem and a collection of nonbasic columns forming the matrix N with A = (B,N). An alternative form of (1) that is useful here for geometric inter...

متن کامل

Computing the Integer Points of a Polyhedron

Let K be a polyhedron in R, given by a system of m linear inequalities, with rational number coefficients bounded over in absolute value by L. We propose an algorithm for computing an irredundant representation of the integer points of K, in terms of “simpler” polyhedra, each of them having at least one integer point. Using the terminology of W. Pugh: for any such polyhedron P , no integer poin...

متن کامل

Integer Points in a Parameterised Polyhedron

The classical parameterised integer feasibility problem is as follows. Given a rational matrix A ∈Q and a rational polyhedronQ ⊆R , decide, whether there exists a point b ∈Q such that Ax6 b is integer infeasible. Ourmain result is a polynomial algorithm to solve a slightly more general parameterised integer feasibility problem if the number n of columns of A is fixed. This extends a result of K...

متن کامل

Lifting 2-integer knapsack inequalities

In this paper we discuss the generation of strong valid inequalities for (mixed) integer knapsack sets based on lifting of valid inequalities for basic knapsack sets with two integer variables (and one continuous variable). The description of the basic polyhedra can be made in polynomial time. We use superadditive valid functions in order to obtain sequence independent lifting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2007

ISSN: 0895-4801,1095-7146

DOI: 10.1137/050639624