The Inverse Problem of Flobenius-Perron Equations in 1D Difference Systems: 1D Map Idealization
نویسندگان
چکیده
منابع مشابه
Homogenization of the 1D Vlasov-Maxwell equations
In this report we investigate the homogenization of the one dimensional Vlasov-Maxwell system. We indicate the rate of convergence towards the limit solution. In the non relativistic case we compute explicitly the limit solution. The theoretical results are illustrated by some numerical simulations. Résumé : Dans ce rapport nous analysons l'homogénéisation des équations de Vlasov-Maxwell 1D. Da...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولComparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations
The results of computations with eight explicit finite difference schemes on a suite of one-dimensional and two-dimensional test problems for the Euler equations are presented in various formats. Both dimensionally split and two-dimensional schemes are represented, as are central and upwind-biased methods, and all are at least second-order accurate.
متن کاملTunneling of Interacting Fermions in 1D Systems
Using the self-consistent Hartree–Fock approximation for spinless electrons at zero temperature, we study tunneling of the interacting electron gas through a single δ barrier in a finite one-dimensional wire connected to contacts. Our results exhibit features known from correlated many-body models. In particular, the conductance decays with the wire length as ∝ L−2α, where the power α is univer...
متن کاملOn Some Fractional Systems of Difference Equations
This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1993
ISSN: 0033-068X,1347-4081
DOI: 10.1143/ptp/90.1.269-a