The $K$-homology class of the Euler characteristic operator is trivial

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The K-homology Class of the Euler Characteristic Operator Is Trivial

Abstract. On any manifold Mn, the de Rham operator D = d + d∗ (with respect to a complete Riemannian metric), with the grading of forms by parity of degree, gives rise by Kasparov theory to a class [D] ∈ KO0(M), which when M is closed maps to the Euler characteristic χ(M) in KO0(pt) = Z. The purpose of this note is to give a quick proof of the (perhaps unfortunate) fact that [D] is as trivial a...

متن کامل

Secondary Characteristic Classes and the Euler Class

We discuss secondary (and higher) characteristic classes for algebraic vector bundles with trivial top Chern class. We then show that if X is a smooth affine scheme of dimension d over a field k of finite 2cohomological dimension (with char(k) 6= 2) and E is a rank d vector bundle over X , vanishing of the Chow-Witt theoretic Euler class of E is equivalent to vanishing of its top Chern class an...

متن کامل

A Hochschild Homology Euler Characteristic for Circle Actions

Abstract. We define an “S -Euler characteristic”, χ̃S1 (X) , of a circle action on a compact manifold or finite complex X . It lies in the first Hochschild homology group HH1(ZG) where G is the fundamental group of X . This χ̃S1 (X) is analogous in many ways to the ordinary Euler characteristic. One application is an intuitively satisfying formula for the Euler class (integer coefficients) of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-04943-6