The lattice size of a lattice polygon
نویسندگان
چکیده
منابع مشابه
EMBEDDING OF THE LATTICE OF IDEALS OF A RING INTO ITS LATTICE OF FUZZY IDEALS
We show that the lattice of all ideals of a ring $R$ can be embedded in the lattice of all its fuzzyideals in uncountably many ways. For this purpose, we introduce the concept of the generalizedcharacteristic function $chi _{s}^{r} (A)$ of a subset $A$ of a ring $R$ forfixed $r , sin [0,1] $ and show that $A$ is an ideal of $R$ if, and only if, its generalizedcharacteristic function $chi _{s}^{...
متن کاملOn the lattice diameter of a convex polygon
The lattice diameter, `(P ), of a convex polygon P in R2 measures the longest string of integer points on a line contained in P . We relate the lattice diameter to the area and to the lattice width of P , wL(P ). We show, e.g., that wL ≤ (4/3)` + 1, thus giving a discrete analogue of Blaschke’s theorem. 1 Discrete Mathematics 241 (2001), 41–50.
متن کاملMinimizing the number of lattice points in a translated polygon
The parametric lattice-point counting problem is as follows: Given an integer matrix A ∈ Zm×n , compute an explicit formula parameterized by b ∈ R that determines the number of integer points in the polyhedron {x ∈R : Ax É b}. In the last decade, this counting problem has received considerable attention in the literature. Several variants of Barvinok’s algorithm have been shown to solve this pr...
متن کاملMoving Out the Edges of a Lattice Polygon
We review previous work of (mainly) Koelman, Haase and Schicho, and Poonen and Rodriguez-Villegas on the dual operations of (i) taking the interior hull and (ii) moving out the edges of a two-dimensional lattice polygon. We show how the latter operation naturally gives rise to an algorithm for enumerating lattice polygons by their genus. We then report on an implementation of this algorithm, by...
متن کاملIdeal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2015
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2015.06.005