The Loss Rank Criterion for Variable Selection in Linear Regression Analysis

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Signed-Rank Variable Selection in Linear Regression

The growing need for dealing with big data has made it necessary to find computationally efficient methods for identifying important factors to be considered in statistical modeling. In the linear model, the Lasso is an effective way of selecting variables using penalized regression. It has spawned substantial research in the area of variable selection for models that depend on a linear combina...

متن کامل

the test for adverse selection in life insurance market: the case of mellat insurance company

انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...

15 صفحه اول

Variable selection in linear regression through adaptive penalty selection

Model selection procedures often use a fixed penalty, such as Mallows’ Cp, to avoid choosing a model which fits a particular data set extremely well. These procedures are often devised to give an unbiased risk estimate when a particular chosen model is used to predict future responses. As a correction for not including the variability induced in model selection, generalized degrees of freedom i...

متن کامل

Alternative Strategies for Variable Selection in Linear Regression Models

1. INTRODUCTION 1.1.1. Variable Selection for Incomplete Data sets In statistical practice, many real-life data sets are incomplete for reasons like non-responses or drop-outs. When a data set is incomplete, practitioners frequently resort to a " case-deletion " strategy within which the incomplete cases are excluded from analysis and the complete cases are formed into a reduced rectangular com...

متن کامل

Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection in Multivariate Regression

The reduced-rank regression is an effective method to predict multiple response variables from the same set of predictor variables, because it can reduce the number of model parameters as well as take advantage of interrelations between the response variables and therefore improve predictive accuracy. We propose to add a new feature to the reduced-rank regression that allows selection of releva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scandinavian Journal of Statistics

سال: 2011

ISSN: 0303-6898

DOI: 10.1111/j.1467-9469.2011.00732.x