THE MASS-CRITICAL FOURTH-ORDER SCHRÖDINGER EQUATION IN HIGH DIMENSIONS
نویسندگان
چکیده
منابع مشابه
The Mass-critical Fourth-order Schrödinger Equation in High Dimensions
We prove global wellposedness and scattering for the Mass-critical homogeneous fourth-order Schrödinger equation in high dimensions n ≥ 5, for general L initial data in the defocusing case, and for general initial data with Mass less than certain fraction of the Mass of the Ground State in the focusing case.
متن کاملHigh-accuracy alternating segment explicit-implicit method for the fourth-order heat equation
Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...
متن کاملHigh Order Stable Finite Difference Methods for the Schrödinger Equation
In this paper we extend the Summation–by–parts–simultaneous approximation term (SBP–SAT) technique to the Schrödinger equation. Stability estimates are derived and the accuracy of numerical approximations of interior order 2m, m = 1, 2, 3, are analyzed in the case of Dirichlet boundary conditions. We show that a boundary closure of the numerical approximations of order m lead to global accuracy...
متن کاملApproximate solution of fourth order differential equation in Neumann problem
Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...
متن کاملQuasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text], [Formula: see text], are quasi-invariant under the flow.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hyperbolic Differential Equations
سال: 2010
ISSN: 0219-8916,1793-6993
DOI: 10.1142/s0219891610002256