The minimal total irregularity of some classes of graphs
نویسندگان
چکیده
منابع مشابه
The maximal total irregularity of some connected graphs
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
متن کاملTotal vertex irregularity strength of corona product of some graphs
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
متن کاملThe irregularity and total irregularity of Eulerian graphs
For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.
متن کاملNon-regular graphs with minimal total irregularity
The total irregularity of a simple undirected graphG is defined as irrt(G) = 1 2 ∑ u,v∈V (G) |dG(u)− dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). Obviously, irrt(G) = 0 if and only if G is regular. Here, we characterize the non-regular graphs with minimal total irregularity and thereby resolve the recent conjecture by Zhu, You and Yang [18] about the lower bound on the minimal ...
متن کاملTotal Vertex Irregularity Strength of Certain Classes of Unicyclic Graphs *
A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1, 2, . . . , k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2016
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1605203z