The mKdV equation and multi-parameters rational solutions

نویسندگان

چکیده

N-order solutions to the modified Korteweg–de Vries (mKdV) equation are given in terms of a quotient two wronskians order N depending on 2N real parameters. When one these parameters goes 0, we succeed get for each positive integer N, rational as polynomials x and t We construct explicit expressions orders N=1 until N=6.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

Exact solutions of the mKdV equation with time-dependent coefficients

In this paper, we study the time variable coefficient modified Korteweg-de Vries (mKdV) equation from group-theoretic point of view. We obtain Lie point symmetries admitted by the mKdV equation for various forms for the time variable coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary variable coefficients. Finally, the solitary ...

متن کامل

New Exact Solutions of a Variable-coefficient Mkdv Equation

In this paper, negatons, positons and complexiton solutions of higher order for a non-isospectral MKdV equation, the MKdV equation with loss and nonuniformity terms are obtained through the bilinear Bäcklund transformation. AMS Subject Classification: 35Q53

متن کامل

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation

A generalized (G ′ /G)-expansion method is used to search for the exact traveling wave solutions of the coupled KdV-mKdV equation. As a result, some new Jacobi elliptic function solutions are obtained. It is shown that the method is straightforward, concise, effective, and can be used for many other nonlinear evolution equations in mathematical physics.

متن کامل

Rational Solutions of the Painleve'–vi Equation

In this paper, we classify all values of the parameters α, β, γ and δ of the Painlevé VI equation such that there are rational solutions. We give a formula for them up to the birational canonical transformations and the symmetries of the Painlevé VI equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wave Motion

سال: 2021

ISSN: ['1878-433X', '0165-2125']

DOI: https://doi.org/10.1016/j.wavemoti.2020.102667