THE MODELING OF "MUSTAHIQ" DATA USING K-MEANS CLUSTERING ALGORITHM AND BIG DATA ANALYSIS (CASE STUDY: LAZ)

نویسندگان

چکیده

There are a lot of Mustahiq data in LAZ (Lembaga Amil Zakat) which is spread many locations today. Each has that different type from other LAZ. differences types so large cannot be used together even though the purpose same to determine data. And find out whether still up date (renewable), course it will very difficult due not uniform or different, long time span, and amount To give zakat certainly requires speed information. So, giving Mustahiq, monitor progress Mustahiq. It possible change his condition become Muzaki. This reason for researcher take this theme order help existing make easier cluster Furthermore, already can by managers develop organization. also reference determining recipient those who entitled later. The research "Modeling using K-Means Algorithm Big Data analysis ". We got with random sample online offline survey. Online survey Google form Offline we BAZNAS (National Zakat Agency) Indonesia another agency (LAZ) Jakarta. conducted combining analyzed Algorithm. algorithm an n objects based on attributes into k partitions according criteria determined diverse focuses modeling applies Algorithms Analysis. first made tools grouping simulation test do several experimental scenarios model mapping developed best processing results study displayed tabular graphical form, namely proposed at Agency (LAZ). result total 1109 correspondents, 300 correspondents included 809 Non-Mustahiq have accuracy rate 83.40%. That means system able Result filtering Gender “Male” 83.93%, Age ”30-39” 71,03%, Job “PNS” 83.39%, Education “S1” 83.79%. advantaged expected quickly person meets as mustahik Muzaki (Amil Agency). clustering application program if UIN Syarif Hidayatullah Jakarta want too.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Hadoop Based Big Data Clustering using Genetic & K-Means Algorithm

This is the era of huge and large sets of data or can say Big Data. Clustering of Big data plays several important roles for Big Data analytics. In this paper, we are introducing Big Data clustering algorithm by combining Genetic and K-Means algorithm using Hadoop framework. The major aim of this hybrid algorithm is to make clustering process faster and also raise the accuracy of resultant clus...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Teknik Informatika

سال: 2021

ISSN: ['1979-9160', '2549-7901']

DOI: https://doi.org/10.15408/jti.v13i2.19610