The multiproximal linearization method for convex composite problems
نویسندگان
چکیده
منابع مشابه
Convergence Analysis of the Gauss-newton Method for Convex Inclusion Problems and Convex Composite Optimization
Using the convex process theory we study the convergence issues of the iterative sequences generated by the Gauss-Newton method for the convex inclusion problem defined by a cone C and a Fréchet differentiable function F (the derivative is denoted by F ′). The restriction in our consideration is minimal and, even in the classical case (the initial point x0 is assumed to satisfy the following tw...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Geometric Descent Method for Convex Composite Minimization
In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh [5] to solving nonsmooth and strongly convex composite problems. We prove that the resulting algorithm, GeoPG, converges with a linear rate (1− 1/√κ), thus achieves the optimal rate among first-order methods, where κ is the condition number of the problem. Numerical results on linear regression and ...
متن کاملAdaptive Regularization in Convex Composite Optimization for Variational Imaging Problems
We propose an adaptive parameter balancing scheme in a variational framework where a convex composite energy functional that consists of data fidelity and regularization is optimized. In our adaptive parameter balancing, the relative weight is assigned to each term of the energy for indicating its significance to the total energy, and is automatically determined based on the data fidelity measu...
متن کاملA new linearization method for quadratic assignment problems
The quadratic assignment problem (QAP) is one of the great challenges in combinatorial optimization. Linearization for QAP is to transform the quadratic objective function into a linear one. Numerous QAP linearizations have been proposed, most of which yield mixed integer linear programs (MILP). Kauffmann and Broeckx’s linearization (KBL) is the current smallest one in terms of the number of va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2019
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-019-01382-3