The Numerical Computation of Connecting Orbits in Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Numerical Computations of Connecting Orbits in Discrete and Continuous Dynamical Systems
The aim of this paper is to present a numerical technique for the computation of connections between periodic orbits in non{autonomous and autonomous systems of ordinary diierential equations. First the existence and computation of connecting orbits between xed points in discrete dy-namical systems is discussed; then it is shown that the problem of nding connections between equilibria and perio...
متن کاملNumerical Verification Method of Existence of Connecting Orbits for Continuous Dynamical Systems
In this paper, a numerical method is presented for proving the existence and inclusion of connecting orbits of continuous dynamical systems described by parameterized nonlinear ordinary di erential equations. Taking a certain second order nonlinear ordinary di erential equaiton as an example, the existence of homoclinic bifurcation points is proved by the method.
متن کاملConstraint Based Computation of Periodic Orbits of Chaotic Dynamical Systems
The chaos theory emerged at the end of the 19th century, and it has given birth to a deep mathematical theory in the 20th century, with a strong practical impact (e.g., weather forecast, turbulence analysis). Periodic orbits play a key role in understanding chaotic systems. Their rigorous computation provides some insights on the chaotic behavior of the system and it enables computer assisted p...
متن کاملConnecting orbits of time dependent Lagrangian systems
We generalize to higher dimension results of Birkhoff and Mather on the existence of orbits wandering in regions of instability of twist maps. This generalization is strongly inspired by the one proposed by Mather in [7]. However, its advantage is that it contains most of the results of Birkhoff and Mather on twist maps. A very natural class of problems in dynamical systems is the existence of ...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IMA Journal of Numerical Analysis
سال: 1990
ISSN: 0272-4979,1464-3642
DOI: 10.1093/imanum/10.3.379